题目内容
(1)当n∈N+时,求证:
≤
+
+…+
<1;
(2)当n∈N+时,求证:1+
+
+…+
<2.
1 |
2 |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
(2)当n∈N+时,求证:1+
1 |
22 |
1 |
32 |
1 |
n2 |
(1)证明:∵
+
+
+…+
≤
+
+…+
<
+
+…+
,
∴
≤
+
+…+
<1,故不等式成立.
(2)证明:∵1+
+
+…+
<1+
+
+
+…+
=1+1-
+
-
+
-
+…+
-
=2-
<2,
即 1+
+
+…+
<2.
1 |
2n |
1 |
2n |
1 |
2n |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
1 |
n |
1 |
n |
1 |
n |
∴
1 |
2 |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
(2)证明:∵1+
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
(n-1)×n |
=1+1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n-1 |
1 |
n |
1 |
n |
即 1+
1 |
22 |
1 |
32 |
1 |
n2 |
练习册系列答案
相关题目