题目内容

【题目】在四棱锥中, ,且平面

1)设平面平面,求证:

2)求证:

3)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.

【答案】(1)见解析;(2)见解析;(3)

【解析】试题分析:(1)利用平行四边形的性质和平行线的传递性即可找出两个平面的交线并且证明结论;(2)利用已知条件结合勾股定理先证明,再利用线面垂直的性质定理和判定定理即可证明;(3)通过结论空间直角坐标系,设,利用法向量与斜线所成的角即可找出点的位置.

试题解析:(1)如图所示,过点,并且取,连接
∴四边形为平行四边形,∴
,∴,即为平面平面
(2)在中,由勾股定理可得 ,∵,∴,∴ ,∴,∴,即;∵底面,∴,∵,∴平面,故.
(3)建立如图所示的空间直角坐标系,则 ,∴,设,则,∴ ,由(2)可知为平面的法向量,∴,∵直线与平面所成角的正弦值为,∴,化为,解得,∴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网