题目内容

【题目】如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.

(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.

【答案】
(1)证明:由圆I与AC相切于点E得IE⊥AC,结合HI⊥AH,得∠AEI=∠AHI=90°,所以A,I,H,E四点共圆.
(2)解:由(1)知A,I,H,E四点共圆,在此圆中∠IEH与∠IAH对同弧,

∴∠IEH=∠HAI.

∵锐角△ABC的内心为I,

∴AI、BI分别是∠BAC、∠ABC的平分线,

可得∠HIA=∠ABI+∠BAI= ∠ABC+ ∠BAC= (∠ABC+∠BAC)= (180°﹣∠C)=90°﹣ ∠C,

结合IH⊥AH,得∠HAI=90°﹣∠HIA=90°﹣(90°﹣ ∠C)= ∠C,所以∠IEH= ∠C.

由∠C=50°得∠IEH=25°


【解析】(1)由于⊙I切AC于点E,可得IE⊥AC,又AH⊥IH,可得A、I、H、E四点共圆;(2)在此圆中∠IEH与∠IAH对同弧.再利用三角形内角平分线的性质和三角形的内角和定理即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网