题目内容

三人独立破译同一份密码.已知三人各自破译出密码的概率分别为
1
5
1
4
1
3
,且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
记“第i个人破译出密码”为事件A1(i=1,2,3),
依题意有P(A1)=
1
5
,P(A2)=
1
4
,P(A3)=
1
.3

且A1,A2,A3相互独立.

(Ⅰ)设“恰好二人破译出密码”为事件B,则有
B=A1•A2
.
A3
•A1
.
A2
•A3+
.
A1
•A2•A3
且A1•A2
.
A3
,A1
.
A2
•A3
.
A1
•A2•A3彼此互斥
于是P(B)=P(A1•A2
.
A3
)+P(A1
.
A2
•A3)+P(
.
A1
•A2•A3
=
1
5
×
1
4
×
2
3
+
1
5
×
3
4
×
1
3
+
4
5
×
1
4
×
1
3

=
3
20

答:恰好二人破译出密码的概率为
3
20


(Ⅱ)设“密码被破译”为事件C,“密码未被破译”为事件D.
D=
.
A1
.
A2
.
A3
,且
.
A1
.
A2
.
A3
互相独立,则有
P(D)=P(
.
A1
)•P(
.
A2
)•P(
.
A3
)=
4
5
×
3
4
×
2
3
=
2
5

而P(C)=1-P(D)=
3
5

故P(C)>P(D).
答:密码被破译的概率比密码未被破译的概率大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网