题目内容

【题目】已知椭圆 的离心率为,若椭圆与圆相交于M,N两点,且圆E在椭圆内的弧长为.

(1)求椭圆的方程;

(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:为定值.

【答案】(1);(2)证明见解析。

【解析】

(1) 可设,得,解方程即得椭圆方程. (2)证明:①若AB斜率不存在,易求得. ②当斜率存在时,设斜率为,直线的方程为,求出,同理可得,再计算.

(1)由圆在椭圆内的弧长为知该弧所对的圆心角为

圆心在该弧的上方,可设

设椭圆方程为,

,解得

所以椭圆方程为.

(2)证明:①若AB斜率不存在,则.此时. .

所以

②当斜率存在时,设斜率为,直线的方程为

,,联立方程得消去得(.

所以

因为垂直,所以直线的斜率为,同理可得

所以

综上

练习册系列答案
相关题目

【题目】交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

A1

上一个年度未发生有责任道路交通事故

下浮10%

A2

上两个年度未发生有责任道路交通事故

下浮20%

A3

上三个及以上年度未发生有责任道路交通事故

下浮30%

A4

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

A5

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

A6

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网