题目内容
20.已知函数f(x)=ax,g(x)=lnx,其中a∈R,(e≈2.718).(1)若函数F(x)=f(x)-g(x)有极值1,求a的值;
(2)若函数G(x)=f(sin(x-1))-g(x)在区间(0,1)上为减函数,求a的取值范围;
(3)证明:$\sum_{k=1}^n$sin$\frac{1}{{{{(k+1)}^2}}}}$<ln2.
分析 (1)F(x)=ax-lnx,(x>0),$F'(x)=a-\frac{1}{x}$,对a分类讨论,利用导数研究函数的单调性极值即可得出;
(2)解法1:由函数G(x)=f(sin(x-1))-g(x)=asin(x-1)-lnx在区间(0,1)上为减函数,可得$G'(x)=acos(x-1)-\frac{1}{x}≤0$在(0,1)上恒成立$?a≤\frac{1}{xcos(x-1)}$在(0,1)上恒成立,设$H(x)=\frac{1}{xcos(x-1)}$,利用导数研究其单调性极值与最值即可得出;
解法2:由函数G(x)=f(sin(x-1))-g(x)=asin(x-1)-lnx在区间(0,1)上为减函数,可得对?x∈(0,1),$G'(x)=acos(x-1)-\frac{1}{x}≤0$(*)恒成立,由x∈(0,1),可得cos(x-1)>0,对a分类讨论:当a≤0时,(*)式显然成立;当a>0时,(*)式?$\frac{1}{a}≥xcos(x-1)$在(0,1)上恒成立,设h(x)=xcos(x-1),利用其单调性即可得出.
(3)证法1:由(2)知,当a=1时,G(x)=sin(x-1)-lnx>G(1)=0,⇒sin(x-1)>lnx$⇒sin(1-x)<ln\frac{1}{x}$.对任意的k∈N*有$\frac{1}{{{{(k+1)}^2}}}∈(0,1)$,可得$1-\frac{1}{{{{(k+1)}^2}}}∈(0,1)$,因此$sin\frac{1}{{{{(k+1)}^2}}}<ln\frac{1}{{1-\frac{1}{{{{(k+1)}^2}}}}}=ln\frac{{{{(k+1)}^2}}}{k(k+2)}$,利用对数的运算性质、“累加求和”即可得出;
证法2:利用导数先证明当$0<x<\frac{π}{2}$时,sinx<x,由于对任意的k∈N*,$\frac{1}{k^2}∈(0,\frac{π}{2})$,而$\frac{1}{k^2}<\frac{4}{{4{k^2}-1}}=2•(\frac{1}{2k-1}-\frac{1}{2k+1})$.可得$sin\frac{1}{{{{(k+1)}^2}}}<\frac{1}{{{{(k+1)}^2}}}<2•(\frac{1}{2k+1}-\frac{1}{2k+3})$,利用“累加求和”即可证明.
解答 解:(1)∵F(x)=ax-lnx,(x>0)
∴$F'(x)=a-\frac{1}{x}$,
①若a≤0,则对任意的x∈(0,+∞)都有F'(x)<0,即函数F(x)在(0,+∞)上单调递减,
函数F(x)在(0,+∞)上无极值;
②若a>0,由F'(x)=0得$x=\frac{1}{a}$,当$x∈(0,\frac{1}{a})$时,F'(x)<0;当$x∈(\frac{1}{a},+∞)$时,F'(x)>0,
即函数F(x)在$(0,\frac{1}{a})$单调递减,在$(\frac{1}{a},+∞)$单调递增,
∴函数F(x)在$x=\frac{1}{a}$处有极小值,
∴$F(\frac{1}{a})$=$1-ln\frac{1}{a}=1$,
∴a=1.
(2)解法1:∵函数G(x)=f(sin(x-1))-g(x)=asin(x-1)-lnx在区间(0,1)上为减函数,
且当x∈(0,1)时,cos(x-1)>0,
∴$G'(x)=acos(x-1)-\frac{1}{x}≤0$在(0,1)上恒成立$?a≤\frac{1}{xcos(x-1)}$在(0,1)上恒成立,
设$H(x)=\frac{1}{xcos(x-1)}$,则$H'(x)=\frac{{-({cos({x-1})-xsin({x-1})})}}{{{x^2}{{cos}^2}(x-1)}}=\frac{{xsin({x-1})-cos({x-1})}}{{{x^2}{{cos}^2}(x-1)}}$,
当x∈(0,1)时,sin(x-1)<0,cos(x-1)>0,
∴H'(x)<0在(0,1)上恒成立,即函数H(x)在(0,1)上单调递减,
∴当x∈(0,1)时,H(x)>H(1)=1,
∴a≤1.
解法2:∵函数G(x)=f(sin(x-1))-g(x)=asin(x-1)-lnx在区间(0,1)上为减函数,
∴对?x∈(0,1),$G'(x)=acos(x-1)-\frac{1}{x}≤0$(*)恒成立,
∵x∈(0,1),∴cos(x-1)>0,
当a≤0时,(*)式显然成立;
当a>0时,(*)式?$\frac{1}{a}≥xcos(x-1)$在(0,1)上恒成立,
设h(x)=xcos(x-1),易知h(x)在(0,1)上单调递增,
∴h(x)<h(1)=1,
∴$\frac{1}{a}≥1$⇒0<a≤1,
综上得a∈(-∞,1].
(3)证法1:由(2)知,当a=1时,G(x)=sin(x-1)-lnx>G(1)=0,⇒sin(x-1)>lnx$⇒sin(1-x)<ln\frac{1}{x}$,
∵对任意的k∈N*有$\frac{1}{{{{(k+1)}^2}}}∈(0,1)$,∴$1-\frac{1}{{{{(k+1)}^2}}}∈(0,1)$
∴$sin\frac{1}{{{{(k+1)}^2}}}<ln\frac{1}{{1-\frac{1}{{{{(k+1)}^2}}}}}=ln\frac{{{{(k+1)}^2}}}{k(k+2)}$,
∴$sin\frac{1}{2^2}+sin\frac{1}{3^2}+…+sin\frac{1}{{{{(n+1)}^2}}}<ln\frac{2^2}{1×3}+ln\frac{3^2}{2×4}+…+ln\frac{{{{(n+1)}^2}}}{n(n+2)}$=$ln[\frac{2^2}{1×3}•\frac{3^2}{2×4}•…•\frac{{{{(n+1)}^2}}}{n(n+2)}]=ln\frac{2(n+1)}{n+2}$<ln2,
即$\sum_{k=1}^n{sin\frac{1}{{{{(k+1)}^2}}}}<ln2$.
证法2:先证明当$0<x<\frac{π}{2}$时,sinx<x,
令p(x)=sinx-x,则p'(x)=cosx-1<0对任意的$x∈(0,\frac{π}{2})$恒成立,
∴函数p(x)在区间$(0,\frac{π}{2})$上单调递减,
∴当$0<x<\frac{π}{2}$时,p(x)<p(0)=0,∴sinx<x,
∵对任意的k∈N*,$\frac{1}{k^2}∈(0,\frac{π}{2})$
而$\frac{1}{k^2}<\frac{4}{{4{k^2}-1}}=2•(\frac{1}{2k-1}-\frac{1}{2k+1})$.
∴$sin\frac{1}{{{{(k+1)}^2}}}<\frac{1}{{{{(k+1)}^2}}}<2•(\frac{1}{2k+1}-\frac{1}{2k+3})$,
∴$\sum_{k=1}^n{sin\frac{1}{{{{(k+1)}^2}}}}<2(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3})<\frac{2}{3}=ln{e^{\frac{2}{3}}}<ln\root{3}{8}=ln2$.
点评 本题考查了利用导数研究函数的单调性极值与最值、利用函数的单调性证明不等式、“累加求和”,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
A. | 25,$\frac{1}{4}$ | B. | 20,$\frac{1}{6}$ | C. | 25,$\frac{1}{600}$ | D. | 25,$\frac{1}{6}$ |