题目内容

(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。

  (Ⅰ)求椭圆E的标准方程;

 (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.

 

【答案】

(1);(2)x-y+2=0.

【解析】

试题分析:(Ⅰ)根据椭圆E:椭圆E:=1(a>b>o)的离心率e=,可得a2=2b2,利用椭圆E:=1经过点(,1)我们有 ,从而可求椭圆E的标准方程;

(Ⅱ)连接OM,OP,OQ,设M(-4,m),由圆的切线性质及∠PMQ=60°,可知△OPM为直角三角形且∠OMP=30°,从而可求M(-4,4),进而以OM为直径的圆K的方程为(x+2)2+(y-2)2=8与圆O:x2+y2=8联立,两式相减可得直线PQ的方程.

解:(1)椭圆的标准方程为:    ﹍﹍﹍﹍﹍﹍﹍4分

(2)连接QM,OP,OQ,PQ和MO交于点A,

有题意可得M(-4,m),∵∠PMQ=600

∴∠OMP=300,∵

∵m>0,∴m=4,∴M(-4,4)             ﹍﹍﹍﹍﹍﹍﹍7分

∴直线OM的斜率,有MP=MQ,OP=OQ可知OM⊥PQ,

,设直线PQ的方程为y=x+n      ﹍﹍﹍﹍﹍﹍﹍9分

∵∠OMP=300,∴∠POM=600,∴∠OPA=300,

,即O到直线PQ的距离为,   ﹍﹍﹍﹍10分

(负数舍去),∴PQ的方程为x-y+2=0.  ﹍﹍﹍﹍12分

考点:本题以椭圆的性质为载体,考查椭圆的标准方程,考查圆与椭圆的综合。 是一道综合试题。

点评:解题的关键是确定M的坐标,进而确定以OM为直径的圆K的方程.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网