题目内容
如图矩形 OABC在变换 的作用下变成了平行四边形OA′B′C′,求变换 T所对应的矩阵 M.![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_ST/images0.png)
【答案】分析:本题可看成是进行两次变换,第一次旋转变换:由矩形OABC变换成平行四边形OA'B'C'可以看成先将矩形OABC绕着O点旋转90°得到矩形OA''B''C''即P=
,第二次切边变换:将矩形OA''B''C''作切变变换得到平行四边形OA'B'C'即Q=
,故最终的QP即为M.
解答:解:由矩形OABC变换成平行四边形OA'B'C'可以看成先将矩形OABC绕着O点旋转90°,
得到矩形OA''B''C'',然后再将矩形OA''B''C''作切变变换得到平行四边形OA'B'C'.
故旋转变换矩阵为:P=
=
切变变换:
→
=
=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/8.png)
∴切变变换矩阵为Q=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/9.png)
∴矩阵M=QP=![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/10.png)
=
.
点评:本题考查了矩阵变换的性质,矩阵的乘法,属于基础题.
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/0.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/1.png)
解答:解:由矩形OABC变换成平行四边形OA'B'C'可以看成先将矩形OABC绕着O点旋转90°,
得到矩形OA''B''C'',然后再将矩形OA''B''C''作切变变换得到平行四边形OA'B'C'.
故旋转变换矩阵为:P=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/2.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/3.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/4.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/5.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/6.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/7.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/8.png)
∴切变变换矩阵为Q=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/9.png)
∴矩阵M=QP=
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/10.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/11.png)
![](http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/20131103175030601624508/SYS201311031750306016245020_DA/12.png)
点评:本题考查了矩阵变换的性质,矩阵的乘法,属于基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目