题目内容

(本小题满分12分)

如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.

(Ⅰ)求证AE⊥平面BCE;

(Ⅱ)求二面角B—AC—E的大小;

 

【答案】

(I)

(II)连结AC、BD交于G,连结FG,

∵ABCD为正方形,∴BD⊥AC,∵BF⊥平面ACE,∴FG⊥AC,∠FGB为二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,又AE=EB,AB=2,AE=BE=

在直角三角形BCE中,CE=

 

在正方形中,BG=,在直角三角形BFG中,

 

∴二面角B-AC-E为

(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACB的距离等于B到平面ACE的距离,BF⊥平面ACE,线段BF的长度就是点B到平面ACE的距离,即为D到平面ACE的距离所以D到平面的距离为

 

另法:过点E作交AB于点O. OE=1.

∵二面角D—AB—E为直二面角,∴EO⊥平面ABCD.

设D到平面ACE的距离为h, 

平面BCE, 

∴点D到平面ACE的距离为

解法二:

(Ⅰ)同解法一.

(Ⅱ)以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O—xyz,如图.

面BCE,BE面BCE,

的中点,

 设平面AEC的一个法向量为

 

解得

    

是平面AEC的一个法向量.

又平面BAC的一个法向量为

 

∴二面角B—AC—E的大小为

 

(III)∵AD//z轴,AD=2,∴

∴点D到平面ACE的距离

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网