题目内容
如图,抛物线y=-x2+1与x轴的正半轴交于点A,将线段OA的n等分点从左至右依次记为P1,P2,…,Pn-1,过这些分点分别作x轴的垂线,与抛物线的交点依次为Q1,Q2,…,Qn-1,从而得到n-1个直角三角形△Q1OP1,△Q2P1P2,…,△Qn-1Pn-2Pn-1.当n→∞时,这些三角形的面积之和的极限为分析:由题意知
(S1+S2+…+Sn-1)=
[(n-1)-
],由此能够推导出这些三角形的面积之和的极限.
lim |
n→∞ |
lim |
n→∞ |
1 |
2n |
12+ 22+…+(n-1)2 |
n2 |
解答:解:p1(
,0),p2(
,0),…,pn-1(
,0);Q1(
,1-(
)2),Q2(
,1-(
)2),…,Qn-1(
,1-(
)2),记△QnPn-1Pn的面积为Sn,则S1=
-
-[1-(
)2],S2=
-
-[1-(
)2],…,Sn-1=
-
-[1-(
)2];
(S1+S2+…+Sn-1)=
[(n-1)-
]=
-
=
-
=
.
答案:
.
1 |
n |
2 |
n |
n-1 |
n |
1 |
n |
1 |
n |
2 |
n |
2 |
n |
n-1 |
n |
n-1 |
n |
1 |
2 |
1 |
n |
1 |
n |
1 |
2 |
1 |
n |
1 |
n |
1 |
2 |
1 |
n |
n-1 |
n |
lim |
n→∞ |
lim |
n→∞ |
1 |
2n |
12+ 22+…+(n-1)2 |
n2 |
1 |
2 |
lim |
n→∞ |
(n-1)(n-2)(2n-3) |
12n3 |
1 |
2 |
1 |
6 |
1 |
3 |
答案:
1 |
3 |
点评:本题考查极限的求法,解题时要注意观察分析能力和归纳总结能力的培养.
练习册系列答案
相关题目