题目内容
关于函数f(x)=lg
(x≠0)有下列命题:
(1)函数图象关于y轴对称;
(2)当x>0时,函数是增函数,当x<0时,函数是减函数;
(3)函数的最小值为lg2;
(4)函数是周期函数.
其中正确命题的序号是
x2+1 | |x| |
(1)函数图象关于y轴对称;
(2)当x>0时,函数是增函数,当x<0时,函数是减函数;
(3)函数的最小值为lg2;
(4)函数是周期函数.
其中正确命题的序号是
(1)(3)
(1)(3)
.分析:(1)可判函数为偶函数,可知正确;
(2)由函数y=x+
的单调性,可知不正确;
(3)结合前面的性质可知函数最小值为lg2;
(4)由以上性质可知函数不是周期函数.
(2)由函数y=x+
1 |
x |
(3)结合前面的性质可知函数最小值为lg2;
(4)由以上性质可知函数不是周期函数.
解答:解:∵函数f(x)=lg
(x≠0),
∴f(-x)=lg
=f(x),即函数为偶函数,故(1)正确;
(2)当x>0时,
=x+
,在(0,1)单调递减,在(1,+∞)单调递增,
故函数f(x)在(0,1)单调递减,在(1,+∞)单调递增,故错误;
(3)由(2)可知当x=1时,函数取最小值lg2,故正确;
(4)由以上分析可知,函数不是周期函数,故错误,
故答案为:(1)(3)
x2+1 |
|x| |
∴f(-x)=lg
x2+1 |
|x| |
(2)当x>0时,
x2+1 |
x |
1 |
x |
故函数f(x)在(0,1)单调递减,在(1,+∞)单调递增,故错误;
(3)由(2)可知当x=1时,函数取最小值lg2,故正确;
(4)由以上分析可知,函数不是周期函数,故错误,
故答案为:(1)(3)
点评:本题考查命题真假的判断,属基础题.
练习册系列答案
相关题目
已知函数f(x)=sin(2x-
)的图象为L,下列说法不正确的是( )
π |
6 |
A、图象L关于直线x=
| ||||
B、图象L关于点(
| ||||
C、函数f(x)在(-
| ||||
D、将L先向左平移
|