ÌâÄ¿ÄÚÈÝ
ÒÑÖª¶þ½×¾ØÕóM=£¨
£©ÓÐÌØÕ÷Öµ¦Ë1=2¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿
1=
£®
£¨¢ñ£©Çó¾ØÕóM£»
£¨II£©Èô
=
£¬ÇóM10
£®
£¨2£©ÒÑÖªÖ±Ïßl£º
£¨tΪ²ÎÊý£©£¬ÇúÏßC1£º
£¨¦ÈΪ²ÎÊý£©£®
£¨¢ñ£©ÉèlÓëC1ÏཻÓÚA£¬BÁ½µã£¬Çó|AB|£»
£¨¢ò£©Èô°ÑÇúÏßC1Éϸ÷µãµÄºá×ø±êѹËõΪÔÀ´µÄ
±¶£¬×Ý×ø±êѹËõΪÔÀ´µÄ
±¶£¬µÃµ½ÇúÏßC2C£¬ÉèµãPÊÇÇúÏßC2ÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£®
£¨3£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x+1|+|x-2|-m£©£®
£¨¢ñ£©µ±m=5ʱ£¬Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý1µÄ½â¼¯ÊÇR£¬ÇómµÄÈ¡Öµ·¶Î§£®
|
e |
|
£¨¢ñ£©Çó¾ØÕóM£»
£¨II£©Èô
a |
|
a |
£¨2£©ÒÑÖªÖ±Ïßl£º
|
|
£¨¢ñ£©ÉèlÓëC1ÏཻÓÚA£¬BÁ½µã£¬Çó|AB|£»
£¨¢ò£©Èô°ÑÇúÏßC1Éϸ÷µãµÄºá×ø±êѹËõΪÔÀ´µÄ
1 |
2 |
| ||
2 |
£¨3£©ÒÑÖªº¯Êýf£¨x£©=log2£¨|x+1|+|x-2|-m£©£®
£¨¢ñ£©µ±m=5ʱ£¬Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý1µÄ½â¼¯ÊÇR£¬ÇómµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©£¨¢ñ£©ÀûÓöþ¼¶¾ØÕóÓëƽÃæÁÐÏòÁ¿µÄ³Ë·¨·¨Ôò£¬¿ÉµÃ½áÂÛ£»
£¨¢ò£©È·¶¨¾ØÕóMµÄÌØÕ÷¶àÏîʽ£¬È·¶¨¾ØÕóMµÄÁíÒ»¸öÌØÕ÷Öµ£¬½ø¶ø¿ÉµÃ
=
+
£¬ÓÉ´Ë¿ÉÇóM10
£»
£¨2£©£¨¢ñ£©½«l¡¢ÇúÏßC1£¬»¯ÎªÆÕͨ·½³Ì£¬ÁªÁ¢·½³Ì×飬½âµÃlÓëÇúÏßC1µÄ½»µã×ø±ê£¬¿ÉÇó|AB|£»
£¨II£©È·¶¨µãPµÄ×ø±êÊÇ£¨
cos¦È£¬
sin¦È£©£¬Çó³öµãPµ½Ö±ÏßlµÄ¾àÀ룬¼´¿ÉÇóµÃ×îСֵ£»
£¨3£©£¨I£©ÓÉÌâÒâ|x+1|+|x-2|-5£¾0£¬Óɴ˿ɵú¯ÊýµÄ¶¨ÒåÓò£»
£¨¢ò£©f£¨x£©¡Ý1µÈ¼ÛÓÚ²»µÈʽ|x+1|+|x-2|-m¡Ý2µÄ½â¼¯ÊÇR£¬Ôòm¡Ü|x+1|+|x-2|-2ÔÚRÉϺã³ÉÁ¢£¬´Ó¶ø¿ÉÇómµÄÈ¡Öµ·¶Î§£®
£¨¢ò£©È·¶¨¾ØÕóMµÄÌØÕ÷¶àÏîʽ£¬È·¶¨¾ØÕóMµÄÁíÒ»¸öÌØÕ÷Öµ£¬½ø¶ø¿ÉµÃ
a |
e1 |
e2 |
a |
£¨2£©£¨¢ñ£©½«l¡¢ÇúÏßC1£¬»¯ÎªÆÕͨ·½³Ì£¬ÁªÁ¢·½³Ì×飬½âµÃlÓëÇúÏßC1µÄ½»µã×ø±ê£¬¿ÉÇó|AB|£»
£¨II£©È·¶¨µãPµÄ×ø±êÊÇ£¨
1 |
2 |
| ||
2 |
£¨3£©£¨I£©ÓÉÌâÒâ|x+1|+|x-2|-5£¾0£¬Óɴ˿ɵú¯ÊýµÄ¶¨ÒåÓò£»
£¨¢ò£©f£¨x£©¡Ý1µÈ¼ÛÓÚ²»µÈʽ|x+1|+|x-2|-m¡Ý2µÄ½â¼¯ÊÇR£¬Ôòm¡Ü|x+1|+|x-2|-2ÔÚRÉϺã³ÉÁ¢£¬´Ó¶ø¿ÉÇómµÄÈ¡Öµ·¶Î§£®
½â´ð£º£¨1£©½â£º£¨¢ñ£©ÒÀÌâÒ⣺
=2
£¬¡à
¡àa=1£¬b=2£®¡£¨3·Ö£©
£¨¢ò£©ÓÉ£¨1£©Öª£¬¾ØÕóMµÄÌØÕ÷¶àÏîʽΪf£¨¦Ë£©=£¨¦Ë-1£©£¨¦Ë-2£©£¬
¡à¾ØÕóMµÄÁíÒ»¸öÌØÕ÷ֵΪ¦Ë2=1£¬¡£¨4·Ö£©
Éè
=
ÊǾØÕóMÊôÓÚÌØÕ÷Öµ¦Ë2=1µÄÌØÕ÷ÏòÁ¿£¬Ôò
=
¡à
£¬È¡x=1£¬µÃ
=
£¬¡£¨5·Ö£©
¡à
=
+
£¬¡àM10
=¦Ë110
+¦Ë210
=210
+110
=
£®¡£¨7·Ö£©
£¨2£©½â£º£¨I£©lµÄÆÕͨ·½³ÌΪy=
£¨x-1£©£¬ÇúÏßC1µÄÆÕͨ·½³ÌΪx2+y2=1
ÁªÁ¢·½³Ì×é
£¬½âµÃlÓëÇúÏßC1µÄ½»µãΪA£¨1£¬0£©£¬B£¨
£¬-
£©£¬Ôò|AB|=1£®¡£¨3·Ö£©
£¨II£©C2µÄ²ÎÊý·½³ÌΪ
£¨¦ÈΪ²ÎÊý£©£¬¹ÊµãPµÄ×ø±êÊÇ£¨
cos¦È£¬
sin¦È£©£¬
´Ó¶øµãPµ½Ö±ÏßlµÄ¾àÀëÊÇd=
=
[
sin(¦È-
)+2]£¬
Óɴ˵±sin(¦È-
)=-1ʱ£¬dÈ¡µÃ×îСֵ£¬ÇÒ×îСֵΪ
(
-1)£®¡£¨7·Ö£©
£¨3£©£¨I£©ÓÉÌâÒâ|x+1|+|x-2|-5£¾0£¬Áîg£¨x£©=|x+1|+|x-2|=
½âµÃx£¾3»òx£¼-2£¬¡àº¯ÊýµÄ¶¨ÒåÓòΪ{x|x£¾3»òx£¼-2}¡£¨3·Ö£©
£¨¢ò£©f£¨x£©¡Ý1£¬¡àlog2£¨|x+1|+|x-2|-m£©¡Ý1=log22£¬¼´|x+1|+|x-2|-m¡Ý2£®
ÓÉÌâÒ⣬²»µÈʽ|x+1|+|x-2|-m¡Ý2µÄ½â¼¯ÊÇR£¬Ôòm¡Ü|x+1|+|x-2|-2ÔÚRÉϺã³ÉÁ¢£®
¶ø|x+1|+|x-2|-2¡Ý3-2=1£¬¹Êm¡Ü1£®¡£¨7·Ö£©
|
|
|
|
£¨¢ò£©ÓÉ£¨1£©Öª£¬¾ØÕóMµÄÌØÕ÷¶àÏîʽΪf£¨¦Ë£©=£¨¦Ë-1£©£¨¦Ë-2£©£¬
¡à¾ØÕóMµÄÁíÒ»¸öÌØÕ÷ֵΪ¦Ë2=1£¬¡£¨4·Ö£©
Éè
e2 |
|
|
|
|
¡à
|
e2 |
|
¡à
a |
e1 |
e2 |
a |
e1 |
e2 |
|
|
|
£¨2£©½â£º£¨I£©lµÄÆÕͨ·½³ÌΪy=
3 |
ÁªÁ¢·½³Ì×é
|
1 |
2 |
| ||
2 |
£¨II£©C2µÄ²ÎÊý·½³ÌΪ
|
1 |
2 |
| ||
2 |
´Ó¶øµãPµ½Ö±ÏßlµÄ¾àÀëÊÇd=
|
| ||||||||||
2 |
| ||
4 |
2 |
¦Ð |
4 |
Óɴ˵±sin(¦È-
¦Ð |
4 |
| ||
4 |
2 |
£¨3£©£¨I£©ÓÉÌâÒâ|x+1|+|x-2|-5£¾0£¬Áîg£¨x£©=|x+1|+|x-2|=
|
½âµÃx£¾3»òx£¼-2£¬¡àº¯ÊýµÄ¶¨ÒåÓòΪ{x|x£¾3»òx£¼-2}¡£¨3·Ö£©
£¨¢ò£©f£¨x£©¡Ý1£¬¡àlog2£¨|x+1|+|x-2|-m£©¡Ý1=log22£¬¼´|x+1|+|x-2|-m¡Ý2£®
ÓÉÌâÒ⣬²»µÈʽ|x+1|+|x-2|-m¡Ý2µÄ½â¼¯ÊÇR£¬Ôòm¡Ü|x+1|+|x-2|-2ÔÚRÉϺã³ÉÁ¢£®
¶ø|x+1|+|x-2|-2¡Ý3-2=1£¬¹Êm¡Ü1£®¡£¨7·Ö£©
µãÆÀ£º±¾ÌâÊÇÑ¡×÷Ì⣬¿¼²é֪ʶȫÃ棬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿