题目内容

(本小题满分12分)已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).

(1)求函数h(x)的定义域;

(2)判断h(x)的奇偶性,并说明理由;

(3)若f(3)=2,求使h(x)>0成立的x的集合.

解:(1)由对数的意义,分别得1+x>0,1-x>0,即x>-1,x<1.∴函数f(x)的定义域为(-1,+∞),函数g(x)的定义域为(-∞,1),

∴函数h(x)的定义域为(-1,1).

(2)∵对任意的x∈(-1,1),-x∈(-1,1),

h(-x)=f(-x)-g(-x)

=loga(1-x)-loga(1+x)

=g(x)-f(x)=-h(x),

∴h(x)是奇函数.

(3)由f(3)=2,得a=2.

此时h(x)=log2(1+x)-log2(1-x),

由h(x)>0即log2(1+x)-log2(1-x)>0,

∴log2(1+x)>log2(1-x).

由1+x>1-x>0,解得0<x<1.

故使h(x)>0成立的x的集合是{x|0<x<1}.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网