题目内容

9、二次函数f(x)的二次项系数为正数,且对任意项x∈R都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则x的取值范围是(  )
分析:由条件“对任意项x∈R都有f(x)=f(4-x)”可得函数f(x)的对称轴为x=2,得到函数f(x)在(-∞,2]上是单调减函数
,所以利用二次函数的单调性建立不等式关系,解之即可.
解答:解:∵对任意项x∈R都有f(x)=f(4-x)
∴函数f(x)的对称轴为x=2
而函数的开口向上,则函数f(x)在(-∞,2]上是单调减函数
∵1-2x2<1,1+2x-x2=-(x-1)2+2≤2,f(1-2x2)<f(1+2x-x2
∴1-2x2>1+2x-x2,解得-2<x<0,
故选C.
点评:本题考查了函数的单调性的应用,以及奇偶函数图象的对称性,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网