题目内容
7、如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AE•AB=AF•AC.
分析:由AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,则射影定理我们易得AD2=AE•AB且AD2=AF•AC,根据等量代换思想易得答案.
解答:证明:∵AD⊥BC,
∴△ADB为直角三角形,
又∵DE⊥AB,由射影定理知,AD2=AE•AB.
同理可得AD2=AF•AC,
∴AE•AB=AF•AC.
∴△ADB为直角三角形,
又∵DE⊥AB,由射影定理知,AD2=AE•AB.
同理可得AD2=AF•AC,
∴AE•AB=AF•AC.
点评:本题考查的知识点是直角三角形的射影定理,射影定理适用范围是“双垂直”,即直角三角形中又有斜边上的高.
练习册系列答案
相关题目
如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
BD,BC=2BD,则sinC的值为( )
3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|