题目内容
(本小题满分12分)(文科做前两问;理科全做.)
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
【答案】
.解:(文科可以参考给分)
(I)设在第一次更换灯棍工作中,不需要更换灯棍的概率为,则.
……………………………… 4分
(II)对该盏灯来说,第1、2次都更换了灯棍的概率为;第一次未更换灯棍而第二次需要更换灯棍的概率为,故所求概率为:
……………………………… 8分
(III)的可能取值为0,1,2,3; 某盏灯在第二次灯棍更换工作中需要更换灯棍的概率为.
P |
0 |
1 |
2 |
3 |
∴的分布列为:
此分布为二项分布—B(3,0.6).
∴ ……………… 12分
【解析】略
练习册系列答案
相关题目