题目内容
【题目】对于数列,若存在,使得对任意都成立,则称数列为“折叠数列”.
(1)若,,判断数列,是否是“ 折叠数列”,如果是,指出m的值;如果不是,请说明理由;
(2)若,求所有的实数q,使得数列是3-折叠数列;
(3)给定常数,是否存在数列使得对所有,都是折叠数列,且的各项中恰有个不同的值,证明你的结论.
【答案】(1)是“折叠数列”,不是“折叠数列”,理由见解析;(2)或或;(3)存在,证明见解析.
【解析】
(1)由给的定义进行求解;
(2)根据题中所给定义,列方程讨论q的取值可得出结果;
(3)只需列举出例子即可证明,结合定义,数列的图象有无数条对称轴,可联想三角函数求解.
解:(1)若数列为“ 折叠数列”,则,
所以,
所以,得,
所以为“ 折叠数列”, ;
若数列是“ 折叠数列,则,
所以,得,
所以数列不是“ 折叠数列;
(2)要使通项公式为的数列是3-折叠数列,只需,
当时, ,显然成立,
当时,由,得,,(),
所以或,
综上,或;
(3)对给定的,都是折叠数列,故有多条对称轴,其中都是数列的对称轴,设,由()得对称轴为,且的周期为,
满足给定常数,使得对所有,都是折叠数列,是周期函数,周期为,在这个周期内,为对称轴,故对应函数值的个数与对应的函数值个数相等,即时,
所以在上单调递增,
因为,所以各项中共有个不同的值,
综上,给定常数,存在数列,使得对所有,都是折叠数列,且的各项中恰有个不同的值
【题目】袋子中有四张卡片,分别写有“国”、“富”、“民”、“强”四个字,有放回地从中任取一张卡片,将三次抽取后“国”“富”两个字都取到记为事件A,用随机模拟的方法估计事件A发生的概率,利用电脑随机产生整数0,1,2,3四个随机数,分别代表“国”、“富”、“民”、“强”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估计事件A发生的概率为_____.
【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.
(1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;
生二孩 | 不生二孩 | 合计 | |
头胎为女孩 | 60 | ||
头胎为男孩 | |||
合计 | 200 |
(2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数的分布列及数学期望.
附:
0.15 | 0.05 | 0.01 | 0.001 | |
2.072 | 3.841 | 6.635 | 10.828 |
(其中).
【题目】新型冠状病毒属于属的冠状病毒,人群普遍易感,病毒感染者一般有发热咳嗽等临床表现,现阶段也出现无症状感染者.基于目前的流行病学调查和研究结果,病毒潜伏期一般为1-14天,大多数为3-7天.为及时有效遏制病毒扩散和蔓延,减少新型冠状病毒感染对公众健康造成的危害,需要对与确诊新冠肺炎病人接触过的人员进行检查.某地区对与确诊患者有接触史的1000名人员进行检查,检查结果统计如下:
发热且咳嗽 | 发热不咳嗽 | 咳嗽不发热 | 不发热也不咳嗽 | |
确诊患病 | 200 | 150 | 80 | 30 |
确诊未患病 | 150 | 150 | 120 | 120 |
(1)能否在犯错率不超过0.001的情况下,认为新冠肺炎密切接触者有发热症状与最终确诊患病有关.
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.645 | 7.879 | 10.828 |
(2)在全国人民的共同努力下,尤其是全体医护人员的辛勤付出下,我国的疫情得到较好控制,现阶段防控重难点主要在境外输入病例和无症状感染者(即无相关临床表现但核酸检测或血清特异性免疫球蛋白M抗体检测阳者).根据防控要求,无症状感染者虽然还没有最终确诊患2019新冠肺炎,但与其密切接触者仍然应当采取居家隔离医学观察14天,已知某人曾与无症状感染者密切接触,而且在家已经居家隔离10天未有临床症状,若该人员居家隔离第天出现临床症状的概率为,,两天之间是否出现临床症状互不影响,而且一旦出现临床症状立刻送往医院核酸检查并采取必要治疗,若14天内未出现临床症状则可以解除居家隔离,求该人员在家隔离的天数(含有临床症状表现的当天)的分布列以及数学期望值.(保留小数点后两位)