题目内容

2 |
(I)求证:BD⊥面A1ACC1;
(Ⅱ)求证:BD⊥OP;
(Ⅲ)求三棱锥P-A1DB的体积.
分析:(1)根据线面垂直的判定定理,要证BD⊥面A1ACC1,只证BD⊥AC,BD⊥AA1即可;
(2)由(1),利用线面垂直的性质可证BD⊥OP;
(3)以△BDP为底,点A1到面BDP的距离为高,根据锥体体积公式可求,其中点A1到面BDP的距离可建立坐标系用向量求得;
(2)由(1),利用线面垂直的性质可证BD⊥OP;
(3)以△BDP为底,点A1到面BDP的距离为高,根据锥体体积公式可求,其中点A1到面BDP的距离可建立坐标系用向量求得;
解答:解:(1)证明:在长方体AC1中,∵底面ABCD是边长为4的正方形,∴对角线BD⊥AC.
又∵A1A⊥平面ABCD,∴A1A⊥BD.
AC∩A1A=A,AC?面A1ACC1,A1A?面A1ACC1;
∴BD⊥面A1ACC1.
(2)由(1)知,BD⊥面A1ACC1,且OP?面A1ACC1.
∴BD⊥OP.
(3)分别以
,
,
的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,
则B(4,4,0),A1(4,0,4
),P(0,4,2
),
=(0,-4,4
),
=(0,4,2
),
=(4,4,0),
设
=(x,y,z)为平面DBP的一个法向量,
则
,即
,取
=(1,-1,
),
点A1到平面平面DBP的距离d=|
|×|cos<
,
>|=|
|×|
|=
=6,
BD=4
,OP=
=
=4,
则S△BDP=
×BD×OP=
×4
×4=8
,
所以三棱锥P-A1DB的体积V=
×S△BDP×d=
×8
×6=16
.
又∵A1A⊥平面ABCD,∴A1A⊥BD.
AC∩A1A=A,AC?面A1ACC1,A1A?面A1ACC1;
∴BD⊥面A1ACC1.
(2)由(1)知,BD⊥面A1ACC1,且OP?面A1ACC1.
∴BD⊥OP.
(3)分别以
DA |
DC |
DD1 |
则B(4,4,0),A1(4,0,4
2 |
2 |
BA1 |
2 |
DP |
2 |
DB |
设
n |
则
|
|
n |
2 |
点A1到平面平面DBP的距离d=|
BA1 |
n |
BA1 |
BA1 |
| ||||
|
|
12 |
2 |
BD=4
2 |
OC2+CP2 |
(2
|
则S△BDP=
1 |
2 |
1 |
2 |
2 |
2 |
所以三棱锥P-A1DB的体积V=
1 |
3 |
1 |
3 |
2 |
2 |
点评:本题考查线面垂直的判定、线面垂直的性质及锥体的体积求解,考查学生综合运用知识解决问题的能力,属中档题.

练习册系列答案
相关题目