题目内容

若一元二次不等式2kx2+kx-
38
<0
对一切实数x都成立,则k的范围是
 
分析:利用一元二次不等式和函数之间的关系,利用判别式进行求解即可.
解答:解:∵一元二次不等式2kx2+kx-
3
8
<0
对一切实数x都成立,
∴k≠0,且满足
2k<0
△=k2-4×2k(-
3
8
)<0

k<0
k2+3k<0

解得-3<k<0,
故答案为:-3<k<0.
点评:本题主要考查一元二次不等式的解法,利用不等式恒成立转化为判别式<0是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网