题目内容
若x、y、z均为实数,且a=x2-2y+,b=y2-2z+,c=z2-2x+,则a、b、c中是否至少有一个大于零?请说明理由.
是
分析:“a、b、c中是否至少有一个大于零”包括多种情况,正面解决很复杂,可考虑反面入手,利用反证法证明,但如何导出矛盾颇有技巧.
假设a、b、c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0.
而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2+π-3,
∵π-3>0,且无论x、y、z为何实数,
(x-1)2+(y-1)2+(z-1)2≥0,
∴a+b+c>0.这与a+b+c≤0矛盾.因此,a、b、c中至少有一个大于0.
假设a、b、c都不大于0,即a≤0,b≤0,c≤0,则a+b+c≤0.
而a+b+c=x2-2y++y2-2z++z2-2x+=(x-1)2+(y-1)2+(z-1)2+π-3,
∵π-3>0,且无论x、y、z为何实数,
(x-1)2+(y-1)2+(z-1)2≥0,
∴a+b+c>0.这与a+b+c≤0矛盾.因此,a、b、c中至少有一个大于0.
练习册系列答案
相关题目