题目内容
函数y=2x3-3x2-12x+5在[0,3]上的最大值、最小值分别是( )
分析:对函数求导,利用导数研究函数y=2x3-3x2-12x+5在[0,3]上的单调性,判断出最大值与最小值位置,代入算出结果.
解答:解:由题设知y'=6x2-6x-12,
令y'>0,解得x>2,或x<-1,
故函数y=2x3-3x2-12x+5在[0,2]上减,在[2,3]上增,
当x=0,y=5;当x=3,y=-4;当x=2,y=-15.
由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15;
故选B.
令y'>0,解得x>2,或x<-1,
故函数y=2x3-3x2-12x+5在[0,2]上减,在[2,3]上增,
当x=0,y=5;当x=3,y=-4;当x=2,y=-15.
由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15;
故选B.
点评:考查用导数研究函数的单调性求最值,本题是导数一章中最基本的题型,解此题的关键就是能够对导数进行正确的求导;
练习册系列答案
相关题目