题目内容
【题目】如图,在四面体中,,.
(1)证明:;
(2)若,,四面体的体积为2,证明:平面平面.
【答案】(1)见解析;(2)见解析
【解析】分析:方法1:(1)作Rt△斜边上的高,连,可得Rt△≌ Rt△,于是,由此可得平面,于是.(2)由题意得,
然后根据平面,四面体的体积可得,于是得到
,故,所以得平面,由面面垂直的判定定理可得结论.
方法2:(1)由三角形全等可得.取的中点,连,,则有平面,从而可得.(2)由题意得△面积为,根据可得点到平面距离.然后在平面内过作于,求得.
故得平面,可证得平面平面.
详解:(1)解法1:如图,作Rt△斜边上的高,连.
∵,,
∴Rt△≌ Rt△.
于是可得.
又,
∴平面,
∵平面,
∴.
(2)在Rt△中,,,
∴,, ,
△的面积.
又平面,四面体的体积,
∴,
∴,,
∴.
∵,,
∴平面.
∵平面,
∴平面平面.
解法2:
(1)∵,,
∴Rt△≌Rt△.
∴.
取的中点,连,,则,,
又
∴平面,
∵平面,
∴.
(2)在Rt△中,,,
∴△面积为.
设到平面距离为,
则,
∴.
在平面内过作,垂足为,
∵,,
∴.
由点到平面距离定义知平面,
∵平面,
∴平面平面.
【题目】为了解人们对“2019年3月在北京召开的第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议”的关注度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的年龄频率分布直方图,在这100人中关注度非常髙的人数与年龄的统计结果如右表所示:
年龄 | 关注度非常高的人数 |
15 | |
5 | |
15 | |
23 | |
17 |
(Ⅰ)由频率分布直方图,估计这100人年龄的中位数和平均数;
(Ⅱ)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以45岁为分界点的不同人群对“两会”的关注度存在差异?
(Ⅲ)按照分层抽样的方法从年龄在35岁以下的人中任选六人,再从六人中随机选两人,求两人中恰有一人年龄在25岁以下的概率是多少.
45岁以下 | 45岁以上 | 总计 | |
非常髙 | |||
一般 | |||
总计 |
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:
0项 | 1项 | 2项 | 3项 | 4项 | 5项 | 5项以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?
比较了解 | 不太了解 | 合计 | |
理科生 | |||
文科生 | |||
合计 |
(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.
(i)求抽取的文科生和理科生的人数;
(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,.