题目内容
求sin220°+cos280°+sin20°cos80°的值.
sin220°+cos280°+sin20°cos80°=(1-cos40°)+
(1+cos160°)+sin20°cos(60°+20°)
=1-cos40°+(cos120°cos40°-sin120°sin40°)+
sin20°(cos60°cos20°-sin60°sin20°)
=1-cos40°-cos40°-sin40°+sin40°-sin220°
=1-cos40°-(1-cos40°)=.
(1+cos160°)+sin20°cos(60°+20°)
=1-cos40°+(cos120°cos40°-sin120°sin40°)+
sin20°(cos60°cos20°-sin60°sin20°)
=1-cos40°-cos40°-sin40°+sin40°-sin220°
=1-cos40°-(1-cos40°)=.
练习册系列答案
相关题目