题目内容
15.在数列{an}中,a1=4,a2=10,若{log3(an-1)}为等差数列,则Tn=$\frac{1}{{a}_{2}-{a}_{1}}+\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$=$\frac{1}{4}$(1-$\frac{1}{{3}^{n}}$).分析 由{log3(an-1)}为等差数列,得到数列{an-1}为等比数列,求出等比数列的通项公式后,进一步得到$\frac{1}{{a}_{n+1}-{a}_{n}}$,然后利用等比数列的前n项和得答案.
解答 解:∵{log3(an-1)}为等差数列,
∴2log3(an-1)=log3(an-1-1)+log3(an+1-1)(n≥2),
即log3(an-1)2=log3(an-1-1)(an+1-1)(n≥2),
(an-1)2=(an-1-1)(an+1-1)(n≥2),
则数列{an-1}为等比数列.
首项为a1-1=4-1=3,公比为$\frac{{a}_{2}-1}{{a}_{1}-1}$=3.
则an-1=3n.
∴$\frac{1}{{a}_{n+1}-{a}_{n}}$=$\frac{1}{{3}^{n+1}+1-{3}^{n}-1}$=$\frac{1}{2•{3}^{n}}$.
则Tn=$\frac{1}{{a}_{2}-{a}_{1}}+\frac{1}{{a}_{3}-{a}_{2}}$+…+$\frac{1}{{a}_{n+1}-{a}_{n}}$=$\frac{1}{2•3}$+$\frac{1}{2•{3}^{2}}$+…+$\frac{1}{2•{3}^{n}}$
=$\frac{1}{2}$•$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{4}$(1-$\frac{1}{{3}^{n}}$).
故答案为:$\frac{1}{4}$(1-$\frac{1}{{3}^{n}}$).
点评 本题考查了等差数列的性质和等比数列的定义和通项及前n项和公式,考查化简运算能力,是中档题.
A. | $\frac{2\sqrt{34}}{17}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{4\sqrt{7}}{7}$ | D. | $\frac{4}{5}$ |
A. | $\frac{7}{24}$ | B. | -$\frac{7}{24}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
A. | z<y<x | B. | z<x<y | C. | y<z<x | D. | x<z<y |