题目内容

如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,

∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.

求证:

(1)DE∥平面ABC;

(2)B1F⊥平面AEF.

证明略


解析:

  方法一  如图建立空间直角坐标系A—xyz,

令AB=AA1=4,

则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).

(1)取AB中点为N,则N(2,0,0),C(0,4,0),D(2,0,2),                3分

=(-2,4,0),=(-2,4,0),

=,                                                                                     4分

∴DE∥NC,又NC平面ABC,DE平面ABC.

故DE∥平面ABC.                                                                                           6分

(2)=(-2,2,-4),

=(2,-2,-2),=(2,2,0).

·=(-2)×2+2×(-2)+(-4)×(-2)=0,

,∴B1F⊥EF,                                                                           10分

·=(-2)×2+2×2+(-4)×0=0.

,即B1F⊥AF,                                                                           12分

又∵AF∩FE=F,∴B1F⊥平面AEF.                                                          14分

方法二  (1)连接A1B、A1E,并延长A1E交AC的延长线于点P,连接BP.由E为C1C的中点且A1C1∥CP,可证A1E=EP.

∵D、E分别是A1B、A1P的中点,

所以DE∥BP.                                                               4分

又∵BP平面ABC,

DE平面ABC,

∴DE∥平面ABC.                                                         6分

(2)∵△ABC为等腰三角形,F为BC的中点,

∴BC⊥AF,                                                                 8分

又∵B1B⊥AF,B1B∩BC=B,∴AF⊥平面B1BF,

而B1F平面B1BF,

∴AF⊥B1F.                                                                  10分

设AB=A1A=a,

则B1F2=a2,EF2=a2

B1E2=a2

∴B1F2+EF2=B1E2,B1F⊥FE.                                               12分

又AF∩FE=F,综上知B1F⊥平面AEF.                                14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网