题目内容

3.已知函数f(x)=xn,若f(a+1)<f(10-2a),
(1)当n=-3时,求a的取值范围;
(2)当n=-$\frac{3}{5}$,-$\frac{2}{3}$时,求a的取值范围.

分析 (1)当n=-3时,根据幂函数的图象和性质即可求a的取值范围;
(2)当n=-$\frac{3}{5}$,-$\frac{2}{3}$时,结合幂函数的奇偶性和单调性进行求解即可

解答 解:(1)当n=-3时,f(x)=x-3=$\frac{1}{{x}^{3}}$,
则函数在(0,+∞)上为减函数,在(-∞,0)上也减函数,
当x>0时,f(x)>0,当x<0时,f(x)<0,
①若$\left\{\begin{array}{l}{a+1<0}\\{10-2a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a<-1}\\{a<5}\end{array}\right.$,此时a<-1
②若$\left\{\begin{array}{l}{a+1>0}\\{10-2a>0}\\{a+1>10-2a}\end{array}\right.$,即$\left\{\begin{array}{l}{a>-1}\\{a<5}\\{a>3}\end{array}\right.$,解得3<a<5,
③若$\left\{\begin{array}{l}{a+1<0}\\{10-2a<0}\\{a+1>10-2a}\end{array}\right.$,即$\left\{\begin{array}{l}{a<-1}\\{a>5}\\{a>3}\end{array}\right.$,此时无解,
综上3<a<5或a<-1.
(2)当n=-$\frac{3}{5}$时,f(x)=${x}^{-\frac{3}{5}}$=$\frac{1}{\root{3}{{x}^{5}}}$,则函数在(0,+∞)上为减函数,在(-∞,0)上也减函数,
当x>0时,f(x)>0,当x<0时,f(x)<0,
①若$\left\{\begin{array}{l}{a+1<0}\\{10-2a>0}\end{array}\right.$,即$\left\{\begin{array}{l}{a<-1}\\{a<5}\end{array}\right.$,此时a<-1
②若$\left\{\begin{array}{l}{a+1>0}\\{10-2a>0}\\{a+1>10-2a}\end{array}\right.$,即$\left\{\begin{array}{l}{a>-1}\\{a<5}\\{a>3}\end{array}\right.$,解得3<a<5,
③若$\left\{\begin{array}{l}{a+1<0}\\{10-2a<0}\\{a+1>10-2a}\end{array}\right.$,即$\left\{\begin{array}{l}{a<-1}\\{a>5}\\{a>3}\end{array}\right.$,此时无解,
综上3<a<5或a<-1.
当n=-$\frac{2}{3}$时,f(x)=${x}^{-\frac{2}{3}}$=$\frac{1}{{x}^{\frac{2}{3}}}$=$\frac{1}{\root{3}{{x}^{2}}}$为增函数,且在在(0,+∞)上为减函数,
则f(a+1)<f(10-2a),
等价为f(|a+1|)<f(|10-2a|),
即|a+1|2)>|10-2a|2>0
则平方得a2-14a+33<0且10-2a≠0,
即3<a<11且a≠5,
即a的取值范围是3<a<11且a≠5.

点评 本题主要考查不等式的求解,利用幂函数的单调性是解决本题的关键.注意要进行分类讨论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网