ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬ÒÔÔµãΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨4cos2¦È+9sin2¦È£©=36£®£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªµãPµÄ×ø±êΪ£¨-2£¬-3£©£¬ÉèÇúÏßC1ºÍC2ÏཻÓÚµãM£¬N£¬Çó|PM|•|PN|µÄÖµ£®
·ÖÎö £¨1£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÇúÏßC2µÄ¼«×ø±ê·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©ÇúÏßC1¹ýµãP£¬Çãб½ÇΪ$\frac{¦Ð}{4}$£¬Ð´³öËüµÄ²ÎÊý·½³Ì£¬´úÈëC2ÖУ¬ÀûÓÃ|PM|•|PN|=|t1•t2|£¬¼´¿ÉÇó³öÖµ£®
½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýt£¬»¯ÎªÆÕͨ·½³ÌÊÇx-y=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨4cos2¦È+9sin2¦È£©=36£¬
»¯ÎªÆÕͨ·½³ÌÊÇ4x2+9y2=36£¬
¼´$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©¡ßµãPµÄ×ø±êΪ£¨-2£¬-3£©£¬¡àÇúÏßC1¹ýµãP£¬
ÇÒÇãб½ÇΪ$\frac{¦Ð}{4}$£¬
¡àËüµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-3+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬
´úÈëC2£º$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1ÖУ¬
»¯¼òµÃ£º13t2-70$\sqrt{2}$t+122=0£¬
¡àt1•t2=$\frac{122}{13}$£¬
¼´|PM|•|PN|=|t1|•|t2|=t1t2=$\frac{122}{13}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓ뼫×ø±êµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßÓëÍÖÔ²·½³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
A£® | µÈ±ßÈý½ÇÐÎ | B£® | µÈÑüÖ±½ÇÈý½ÇÐÎ | C£® | Ö±½ÇÈý½ÇÐÎ | D£® | бÈý½ÇÐÎ |
A£® | a¡Ü1 | B£® | a¡Ý1 | C£® | a¡Ý$\frac{3}{2}$ | D£® | a¡Ü$\frac{3}{2}$ |
A£® | $\frac{1}{4}$ | B£® | 1 | C£® | 2 | D£® | 4 |