题目内容
【题目】2018年6月19日凌晨某公司公布的年中促销全天交易数据显示,天猫年中促销当天全天下单金额为1592亿元.为了了解网购者一次性购物情况,某统计部门随机抽查了6月18日100名网购者的网购情况,得到如下数据统计表,已知网购金额在2000元以上(不含2000元)的频率为0.4.
网购金额(元) | 频数 | 频率 |
5 | 0.05 | |
15 | 0.15 | |
25 | 0.25 | |
30 | 0.3 | |
合计 | 100 | 1 |
(Ⅰ)先求出的值,再将图中所示的频率分布直方图绘制完整;
(Ⅱ)对这100名网购者进一步调查显示:购物金额在2000元以上的购物者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的购物者中网龄不足3年的有20人,请填写下面的列联表,并据此判断能否在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关?
网龄3年以上 | 网龄不足3年 | 总计 | |
购物金额在2000元以上 | 35 | ||
购物金额在2000元以下 | 20 | ||
总计 | 100 |
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:其中.
(Ⅲ)从这100名网购者中根据购物金额分层抽出20人给予返券奖励,为进一步激发购物热情,在和两组所抽中的8人中再随机抽取2人各奖励1000元现金,求组获得现金奖的数学期望.
【答案】(Ⅰ)见解析; (Ⅱ)在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关.(Ⅲ)1500.
【解析】
(Ⅰ)由题意可知2000元以上(不含2000元)的频率为0.4,所以网购金额在(2500,3000]的频率为0.40.3=0.1,由此再结合频率分布直方图与频率分布表可分别求得的值。再由数据补全频率分布直方图。(Ⅱ)先补全2×2列联表,由表中数据求得K2。(Ⅲ)在(2000,2500]组获奖人数X为0,1,2,求得概率及期望。
(Ⅰ)因为网购金额在2000元以上(不含2000元)的频率为0.4,
所以网购金额在(2500,3000]的频率为0.40.3=0.1,
即q=0.1,且y=100×0.1=10,
从而x=15,p=0.15,相应的频率分布直方图如图2所示.
(Ⅱ)相应的2×2列联表为:
由公式K2=,
因为5.56>5.024,
所以据此列联表判断,在犯错误的概率不超过0.025的前提下认为网购金额超过2000元与网龄在3年以上有关.
(Ⅲ)在(2000,2500]和(2500,3000]两组所抽出的8人中再抽取2人各奖励1000元现金,则(2000,2500]组获奖人数X为0,1,2,
且 ,
故(2000,2500]组获得现金奖的数学期望+1000+2000=1500.
【题目】是指空气中直径小于或等于微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | |||||
的浓度(微克/立方米) |
(Ⅰ)根据上表数据,请在所给的坐标系中画出散点图;
(Ⅱ)根据上表数据,用最小二乘法求出关于的线性回归方程;
(Ⅲ)若周六同一时间段的车流量是万辆,试根据(Ⅱ)求出的线性回归方程,预测此时的浓度为多少(保留整数)?
参考公式:由最小二乘法所得回归直线的方程是:,
其中.