题目内容
【题目】(2017·黄冈质检)设等比数列{an}的各项均为正数,公比为q,前n项和为Sn.若对任意的n∈N*,有S2n<3Sn,则q的取值范围是( )
A. (0,1] B. (0,2)
C. [1,2) D. (0, )
【答案】A
【解析】当q≠1时,∵S2n<3Sn,∴,∴qn<2.若q>1,则n<logq2对任意的n∈N*恒成立,显然不成立.若0<q<1,则n>logq2对任意的n∈N*恒成立,∴logq2<nmin,∴logq2<1,即0<q<2,又0<q<1,∴0<q<1.当q=1时,对任意的n∈N*,有S2n<3Sn成立.综上可得,0<q≤1.故选A.
点睛:数列中恒成立问题,与函数恒成立问题一样可转化为最值问题,即恒成立 , 恒成立 .
【题目】2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.
图1
选手乙的接发球技术统计表
技术 | 反手拧球 | 反手搓球 | 反手拉球 | 反手拨球 | 正手搓球 | 正手拉球 | 正手挑球 |
使用次数 | 20 | 2 | 2 | 4 | 12 | 4 | 1 |
得分率 | 55% | 50% | 0% | 75% | 41.7% | 75% | 100% |
表1
(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?
(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?
(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)