题目内容

(1991•云南)设复数z1=2-i,z2=1-3i,则复数
i
z1
+
.
z
2
5
的虚部等于
1
1
分析:利用复数的运算性质将
i
z1
+
.
z
2
5
转化为a+bi(a,b∈R)的形式,即可求得答案.
解答:解:∵z1=2-i,
.
z1
=2+i,
i
z1
=
i•
.
z1
z1
.
z1
=
i(2+i)
5
=-
1
5
+
2
5
i;
又z2=1-3i,
.
z2
=1+3i,
.
z
2
5
=
1
5
+
3
5
i;
i
z1
+
.
z
2
5
=i,
i
z1
+
.
z
2
5
的虚部等于1.
故答案为:1.
点评:本题考查复数代数形式的乘除运算,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网