题目内容

【题目】某射击游戏规定:每位选手最多射击3次;射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i(i=1,2,3)次射击时击中目标得4﹣i分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.
(Ⅰ)求甲恰好射击两次的概率;
(Ⅱ)设该选手甲停止射击时的得分总和为ξ,求随机变量ξ的分布列及数学期望.

【答案】解:(Ⅰ)设选手甲第i次击中目标的事件为Ai(i=1,2,3),

依题可知:Ai与Aj(i,j=1,2,3,i≠j)相互独立
所求为:
(Ⅱ)ξ可能取的值为0,3,5,6.         
ξ的分布列为:

ξ

0

3

5

6

P

0.2

0.16

0.128

0.512

…(10分)(表中的每一个概率值各占1分)
∴Eξ=0×0.2+3×0.16+5×0.128+6×0.512=4.192.
【解析】(Ⅰ)甲恰好射击两次说明第一次射中,第二次未射中,设选手甲第i次击中目标的事件为Ai(i=1,2,3),则 , 而Ai与Aj(i,j=1,2,3,i≠j)相互独立,从而求出所求;
(II)ξ可能取的值为0,3,5,6,然后求出相应的概率,得到ξ的分布列,最后根据离散型随机变量的期望公式解之即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网