题目内容

已知动点P与平面上两定点A(-
2
,0),B(
2
,0)
连线的斜率的积为定值-
1
2

(1)试求动点P的轨迹方程C;
(2)设直线l:y=kx+1与曲线C交于M.N两点,当|MN|=
4
2
3
时,求直线l的方程.
分析:(Ⅰ)设出P的坐标,利用动点P与平面上两定点A(-
2
,0),B(
2
,0)
连线的斜率的积为定值-
1
2
,建立方程,化简可求动点P的轨迹方程C.
(Ⅱ)直线l:y=kx+1与曲线C方程联立,利用韦达定理计算弦长,即可求得结论.
解答:解:(Ⅰ)设动点P的坐标是(x,y),由题意得:kPAkPB=-
1
2

y
x+
2
y
x-
2
=-
1
2
,化简,整理得
x2
2
+y2=1

故P点的轨迹方程是
x2
2
+y2=1
,(x≠±
2

(Ⅱ)设直线l与曲线C的交点M(x1,y1),N(x2,y2),
y=kx+1
x2+2y2=2
得,(1+2k2)x2+4kx=0
∴x1+x2=-
4k
1+2k2
,x1 x2=0,
|MN|=
1+k2
(x1+x2)2-4x1x2
=
4
2
3

整理得,k4+k2-2=0,解得k2=1,或k2=-2(舍)
∴k=±1,经检验符合题意.
∴直线l的方程是y=±x+1,即:x-y+1=0或x+y-1=0
点评:本题考查轨迹方程的求解,考查直线与椭圆的位置关系,考查弦长公式的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网