题目内容

已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(3)当x>y>e-1时,求证:ex-y
ln(x+1)ln(y+1)
分析:(Ⅰ)f′(x)=a-
1
x
=
ax-1
x
,由此进行分类讨论,能求出函数f(x)在定义域内的极值点的个数.
(Ⅱ)由函数f(x)在x=1处取得极值,知a=1,故f(x)≥bx-2?1+
1
x
-
lnx
x
≥b
,由此能求出实数b的取值范围.
(Ⅲ)由ex-y
ln(x+1)
ln(y+1)
?
ex
ln(x+1)
ey
ln(y+1)
,令g(x)=
ex
ln(x+1)
,则只要证明g(x)在(e-1,+∞)上单调递增,由此能够证明ex-y
ln(x+1)
ln(y+1)
解答:解:(Ⅰ)f′(x)=a-
1
x
=
ax-1
x

当a≤0时,f'(x)<0在(0,+∞)上恒成立,
函数f(x)在(0,+∞)单调递减,
∴f(x)在(0,+∞)上没有极值点;
当a>0时,f'(x)<0得0<x<
1
a
,f'(x)>0得x>
1
a

∴f(x)在(0,
1
a
)
上递减,在(
1
a
,+∞)
上递增,
即f(x)在x=
1
a
处有极小值.
∴当a≤0时f(x)在(0,+∞)上没有极值点,
当a>0时,f(x)在(0,+∞)上有一个极值点.(4分)
(注:分类讨论少一个扣一分.)
(Ⅱ)∵函数f(x)在x=1处取得极值,∴a=1,…(5分)
f(x)≥bx-2?1+
1
x
-
lnx
x
≥b
,…(6分)
g(x)=1+
1
x
-
lnx
x
,可得g(x)在(0,e2]上递减,在[e2,+∞)上递增,…(8分)
g(x)min=g(e2)=1-
1
e2
,即b≤1-
1
e2
.(9分)
(Ⅲ)证明:ex-y
ln(x+1)
ln(y+1)
?
ex
ln(x+1)
ey
ln(y+1)
,(10分)
g(x)=
ex
ln(x+1)

则只要证明g(x)在(e-1,+∞)上单调递增,
又∵g′(x)=
ex[ln(x+1)-
1
x+1
]
ln2(x+1)

显然函数h(x)=ln(x+1)-
1
x+1
在(e-1,+∞)上单调递增.(12分)
h(x)>1-
1
e
>0
,即g'(x)>0,
∴g(x)在(e-1,+∞)上单调递增,
ex
ln(x+1)
ey
ln(y+1)

∴当x>y>e-1时,有ex-y
ln(x+1)
ln(y+1)
.(14分)
点评:本题考查函数的求极值点的个数的求法,考查满足条件的实数的求法,考查不等式的证明.解题时要合理运用导数性质,注意等价转化思想和分类讨论思想的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网