题目内容

【题目】如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,BD∩AC=0,M是线段D1O上的动点,过点M做平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为(

A.
B.
C.
D.1

【答案】B
【解析】解:∵平面ACD1⊥平面BDD1B1 , 又MN⊥平面ACD1
∴MN平面BDD1B1 , ∴N∈B1D1
过N作NG⊥A1B1 , 交A1B1于G,将平面A1B1C1D1展开,如图:

设NG=x,(0≤x≤1),
∴AN= = =
当x= 时最小.
故选B.
【考点精析】根据题目的已知条件,利用棱柱的结构特征的相关知识可以得到问题的答案,需要掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网