题目内容
【题目】如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,BD∩AC=0,M是线段D1O上的动点,过点M做平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为( )
A.
B.
C.
D.1
【答案】B
【解析】解:∵平面ACD1⊥平面BDD1B1 , 又MN⊥平面ACD1 ,
∴MN平面BDD1B1 , ∴N∈B1D1
过N作NG⊥A1B1 , 交A1B1于G,将平面A1B1C1D1展开,如图:
设NG=x,(0≤x≤1),
∴AN= = = ≥ ,
当x= 时最小.
故选B.
【考点精析】根据题目的已知条件,利用棱柱的结构特征的相关知识可以得到问题的答案,需要掌握两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
练习册系列答案
相关题目
【题目】某市对贫困家庭自主创业给予小额贷款补贴,每户贷款额为万元,贷款期限有个月、个月、个月、个月、个月五种,这五种贷款期限政府分别需要补助元、元、元、元、元,从年享受此项政策的困难户中抽取了户进行了调查统计,选取贷款期限的频数如下表:
贷款期限 | 个月 | 个月 | 个月 | 个月 | 个月 |
频数 |
以商标各种贷款期限的频率作为年贫困家庭选择各种贷款期限的概率.
(1)某小区年共有户准备享受此项政策,计算其中恰有两户选择贷款期限为个月的概率;
(2)设给享受此项政策的某困难户补贴为元,写出的分布列,若预计年全市有万户享受此项政策,估计年该市共要补贴多少万元.