题目内容

16.(1)化简$\frac{sin(2π-α)cos(π+α)}{cos(α-π)cos(\frac{π}{2}-α)}$
(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

分析 (1)原式利用诱导公式化简,约分即可得到结果;
(2)原式分母看做“1”,利用同角三角函数间基本关系化简,将tanx的值代入计算即可求出值.

解答 解:(1)原式=$\frac{-sinα(-cosα)}{-cosαsinα}$=-1;
(2)∵tanx=2,
∴原式=$\frac{2sinxcosx-sinxcosx+co{s}^{2}x-si{n}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{sinxcosx+co{s}^{2}x-si{n}^{2}x}{si{n}^{2}x+co{s}^{2}x}$=$\frac{tanx+1-ta{n}^{2}x}{ta{n}^{2}x+1}$=$\frac{2+1-4}{4+1}$=-$\frac{1}{5}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网