题目内容
【题目】设函数,其中
(1)讨论在其定义域上的单调性;
(2)当时,求取得最大值和最小值时的的值.
【答案】(1)在和内单调递减,在内单调递增;(2)所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.
【解析】
试题(1)对原函数进行求导,,令,解得,当或时;从而得出,当时,.故在和内单调递减,在内单调递增.(2)依据第(1)题,对进行讨论,①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.
(1)的定义域为,.令,得,所以.当或时;当时,.故在和内单调递减,在内单调递增.
因为,所以.
①当时,,由(1)知,在上单调递增,所以在和处分别取得最小值和最大值.②当时,.由(1)知,在上单调递增,在上单调递减,因此在处取得最大值.又,所以当时,在处取得最小值;当时,在和处同时取得最小只;当时,在处取得最小值.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机购为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事用户车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.
【题目】“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:
男性 | 女性 | 合计 | |
爱好 | 10 | ||
不爱好 | 8 | ||
合计 | 30 |
已知在这30人中随机抽取1人抽到爱好运动的员工的概率是.
(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?
(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为,求的分布列、数学期望.参考数据:
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024/span> | 6.635 | 7.879 | 10.828 |