题目内容
【题目】对于正整数,如果个整数满足,
且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.
(Ⅰ)写出整数4的所有“正整数分拆”;
(Ⅱ)对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;
(Ⅲ)对所有的正整数,证明:;并求出使得等号成立的的值.
(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)
【答案】(Ⅰ) ,,,,;(Ⅱ) 为偶数时,,为奇数时,;(Ⅲ)证明见解析,,
【解析】
(Ⅰ)根据题意直接写出答案.
(Ⅱ)讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.
(Ⅲ) 讨论当为奇数时,,至少存在一个全为1的拆分,故,当为偶数时,
根据对应关系得到,再计算,,得到答案.
(Ⅰ)整数4的所有“正整数分拆”为:,,,,.
(Ⅱ)当为偶数时,时,最大为;
当为奇数时,时,最大为;
综上所述:为偶数,最大为,为奇数时,最大为.
(Ⅲ)当为奇数时,,至少存在一个全为1的拆分,故;
当为偶数时,设是每个数均为偶数的“正整数分拆”,
则它至少对应了和的均为奇数的“正整数分拆”,
故.
综上所述:.
当时,偶数“正整数分拆”为,奇数“正整数分拆”为,;
当时,偶数“正整数分拆”为,,奇数“正整数分拆”为,
故;
当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出一项各项均为的“正整数分拆”,故.
综上所述:使成立的为:或.
练习册系列答案
相关题目