ÌâÄ¿ÄÚÈÝ
£¨2013•ÑîÆÖÇøһģ£©ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ùΪÕýÊýÇÒ¹«±È²»µÈÓÚ1µÄµÈ±ÈÊýÁУ®¶ÔÓÚº¯Êýy=f£¨x£©£¬ÈôÊýÁÐ{lnf£¨an£©}ΪµÈ²îÊýÁУ¬Ôò³Æº¯Êýf£¨x£©Îª¡°±£±È²îÊýÁк¯Êý¡±£®ÏÖÓж¨ÒåÔÚ£¨0£¬+¡Þ£©ÉϵÄÈçϺ¯Êý£º
¢Ùf(x)=
£¬
¢Úf£¨x£©=x2£¬
¢Ûf£¨x£©=ex£¬
¢Üf(x)=
£¬
ÔòΪ¡°±£±È²îÊýÁк¯Êý¡±µÄËùÓÐÐòºÅΪ£¨¡¡¡¡£©
¢Ùf(x)=
1 |
x |
¢Úf£¨x£©=x2£¬
¢Ûf£¨x£©=ex£¬
¢Üf(x)=
x |
ÔòΪ¡°±£±È²îÊýÁк¯Êý¡±µÄËùÓÐÐòºÅΪ£¨¡¡¡¡£©
·ÖÎö£ºÉèÊýÁÐ{an}µÄ¹«±ÈΪq£¨q¡Ù1£©£¬ÀûÓñ£±È²îÊýÁк¯ÊýµÄ¶¨Ò壬ÑéÖ¤ÊýÁÐ{lnf£¨an£©}ΪµÈ²îÊýÁУ¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£ºÉèÊýÁÐ{an}µÄ¹«±ÈΪq£¨q¡Ù1£©
¢ÙÓÉÌâÒ⣬lnf£¨an£©=ln
£¬¡àlnf£¨an+1£©-lnf£¨an£©=ln
-ln
=ln
=-lnqÊdz£Êý£¬¡àÊýÁÐ{lnf£¨an£©}ΪµÈ²îÊýÁУ¬Âú×ãÌâÒ⣻
¢ÚÓÉÌâÒ⣬lnf£¨an£©=lnan2£¬¡àlnf£¨an+1£©-lnf£¨an£©=lnan+12-lnan2=lnq2=2lnqÊdz£Êý£¬¡àÊýÁÐ{lnf£¨an£©}ΪµÈ²îÊýÁУ¬Âú×ãÌâÒ⣻
¢ÛÓÉÌâÒ⣬lnf£¨an£©=lnean£¬¡àlnf£¨an+1£©-lnf£¨an£©=lnean+1-lnean=an+1-an²»Êdz£Êý£¬¡àÊýÁÐ{lnf£¨an£©}²»ÎªµÈ²îÊýÁУ¬²»Âú×ãÌâÒ⣻
¢ÜÓÉÌâÒ⣬lnf£¨an£©=ln
£¬¡àlnf£¨an+1£©-lnf£¨an£©=ln
-ln
=
lnqÊdz£Êý£¬¡àÊýÁÐ{lnf£¨an£©}ΪµÈ²îÊýÁУ¬Âú×ãÌâÒ⣻
×ÛÉÏ£¬Îª¡°±£±È²îÊýÁк¯Êý¡±µÄËùÓÐÐòºÅΪ¢Ù¢Ú¢Ü
¹ÊÑ¡C£®
¢ÙÓÉÌâÒ⣬lnf£¨an£©=ln
1 |
an |
1 |
an+1 |
1 |
an |
an |
an+1 |
¢ÚÓÉÌâÒ⣬lnf£¨an£©=lnan2£¬¡àlnf£¨an+1£©-lnf£¨an£©=lnan+12-lnan2=lnq2=2lnqÊdz£Êý£¬¡àÊýÁÐ{lnf£¨an£©}ΪµÈ²îÊýÁУ¬Âú×ãÌâÒ⣻
¢ÛÓÉÌâÒ⣬lnf£¨an£©=lnean£¬¡àlnf£¨an+1£©-lnf£¨an£©=lnean+1-lnean=an+1-an²»Êdz£Êý£¬¡àÊýÁÐ{lnf£¨an£©}²»ÎªµÈ²îÊýÁУ¬²»Âú×ãÌâÒ⣻
¢ÜÓÉÌâÒ⣬lnf£¨an£©=ln
an |
an+1 |
an |
1 |
2 |
×ÛÉÏ£¬Îª¡°±£±È²îÊýÁк¯Êý¡±µÄËùÓÐÐòºÅΪ¢Ù¢Ú¢Ü
¹ÊÑ¡C£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²é¶ÔÊýµÄÔËËãÐÔÖÊ£¬¿¼²éµÈ²îÊýÁеÄÅж¨£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿