题目内容
已知抛物线与椭圆有公共焦点,且椭圆过点.
(1)求椭圆方程;
(2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙ 的切线,求直线的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
(1)求椭圆方程;
(2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙ 的切线,求直线的方程;
(3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
(1);(2)或;(3).
试题分析:(1)由题目给出的条件直接求解的值,则可求出椭圆方程;(2)当所求直线斜率不存在时,其方程为,符合题意;当直线斜率存在时,可设其斜率为,写出直线的点斜式方程,因为直线与圆相切,所以根据圆心到直线的距离等于圆的半径可直接求得直线的斜率,从而得到方程;(3)由题意可知,两直线的斜率都存在,设AP:,代入椭圆的方程从而求出点的坐标,同理再求出点的坐标,从而可求出直线的方程,由方程可知当时,恒成立,所以直线恒过定点.
试题解析:
(1),则c=2, 又,得
∴所求椭圆方程为 .
(2)M,⊙M:,直线l斜率不存在时,,
直线l斜率存在时,设为,
∴,解得,
∴直线l为或 .
(3)显然,两直线斜率存在, 设AP:,
代入椭圆方程,得,解得点,
同理得,直线PQ:,
令x=0,得,∴直线PQ过定点.
练习册系列答案
相关题目