题目内容

(本题满分12分)
为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人;

(Ⅰ)求被抽查的工人总人数n及图中所示m为多少;
(Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。

(Ⅰ)m=0.025,   n="20" (Ⅱ)13人

解析试题分析:根据直方图分析可知该产品数量在[55,75)的频率,又由频率与频数的关系计算可得生产该产品数量在[55,75)的人数
(Ⅰ)m=0.025,   n="20"
(Ⅱ)解:由直方图可知:生产该产品数量在[55,75)的频率=0.065×10,∴生产该产品数量在[55,75)的人数=20×(0.065×10)=13,故答案为13.
考点:直方图的运用
点评:解决该试题的关键是理解直方图中方形的面积代表频率,同时能根据频率与频数的关系式来得到求解,属于基础题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网