题目内容

已知sinα是方程5x2-7x-6=0的根,求sin2[(2k+
1
2
)π-α]+cos2(α-
2
)+cot2
19
2
π
-α)k∈Z的值.
分析:由已知,先得出sinα=-
3
5
,cosα=±
4
5
.将sin2[(2k+
1
2
)π-α]+cos2(α-
2
)+cot2
19
2
π
-α)利用三角函数公式化简为tan2α?,再根据同角三角函数基本关系式计算.
解答:解:由5x2-7x-6=0解得x=2或x=-
3
5

∵-1≤sinα≤1,且为方程的根,?
∴sinα=-
3
5
,∴cosα=±
4
5

∵sin2[(2k+
1
2
)π-α]=sin2[2kπ+(
π
2
-α)]=sin2
π
2
-α)=cos2α?
cos2(α-
2
)=cos2
x
2
-α)=sin2α?
cot2
19
2
π-α)=cot2[8π+(
x
2
-α)]?
=cos2
x
2
-α)=tan2α?
∴原式=sin2α+cos2α+tan2α?
=1+
sin2α
cos2α
=1+
9
25
16
25
=1+
9
16
=
25
16
点评:本题考查三角函数公式的化简求值应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网