题目内容

已知函数f(x)=ax2+ax和g(x)=x-a,其中a∈R,且a≠0.
(I)若函数f(x)与g(x)图象相交于不同的两点A、B,O为坐标原点,试求△OAB的面积S的最大值;
(II)若p和q是方程f(x)-g(x)=0的两正根,且,证明:当x∈(0,P)时,f(x)<P-a.
【答案】分析:(I)依题意,f(x)=g(x),函数f(x)与g(x)图象相交于不同的两点A、B,则△>0,求出a的范围,设A(x1,y1),B(x2,y2),求出AB以及点O到直线g(x)=x-a的距离,从而求出三角形的面积关于a的函数,根据a的范围求出面积的最值;
(II)由f(x)-g(x)=a(x-p)(x-q),以及g(x)=x-a,表示出f(x),代入f(x)-(p-a)中,因式分解后,判定其积小于0,从而得到f(x)小于p-a,得证.
解答:解:(I)依题意,f(x)=g(x),即ax2+ax=x-a,
整理,得ax2+(a-1)x+a=0,①
∵a≠0,函数f(x)与g(x)图象相交于不同的两点A、B,
∴△>0,即△=(a-1)2-4a2=-3a2-2a+1=(3a-1)(-a-1)>0.
∴-1<a<且a≠0.
设A(x1,y1),B(x2,y2),且x1<x2,由①得,x1•x2=1>0,x1+x2=-
设点O到直线g(x)=x-a的距离为d,则d=
∴S△OAB==
∵∴-1<a<且a≠0,∴当a=-时,S△OAB有最大值
(II)证明:由题意可知f(x)-g(x)=a(x-p)(x-q)
∴f(x)-(p-a)=a(x-p)(x-q)+x-a-(p-a)=(x-p)(ax-aq+1),
当x∈(0,p)时,x-p<0,且ax-aq+1>1-aq>0,
∴f(x)-(p-a)<0,
∴f(x)<p-a.
点评:本题考查了三角形面积的计算,以及利用二次函数研究函数的最值,考查不等式的证明.根据题意设出f(x)-g(x)是解本题的关键,证明不等式的方法是灵活运用“作差法”,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网