题目内容

已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则n+m=________.


分析:先结合函数f(x)=|log2x|的图象和性质,再由f(m)=f(n),得到m,n的倒数关系,再由“若f(x)在区间[m2,n]上的最大值为2”,求得m.n的值得到结果.
解答:∵f(x)=|log2x|,且f(m)=f(n),
∴mn=1
∵若f(x)在区间[m2,n]上的最大值为2
∴|log2m2|=2
∵m<n,
∴m=
∴n=2
∴n+m=
故答案为:
点评:本题主要考查对数函数的图象和性质,特别是取绝对值后考查的特别多,解决的方法多数用数形结合法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网