题目内容
12.已知函数f(x)=$\left\{\begin{array}{l}2cos\frac{πx}{3}(x≤2012)\\{2^{x-2012}}(x>2012)\end{array}$,则f[f(2013)]=-1.分析 根据已知中函数f(x)=$\left\{\begin{array}{l}2cos\frac{πx}{3}(x≤2012)\\{2^{x-2012}}(x>2012)\end{array}$,将x=2013代入可得答案.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}2cos\frac{πx}{3}(x≤2012)\\{2^{x-2012}}(x>2012)\end{array}$,
∴f[f(2013)]=f(22013-2012)=f(2)=2$cos\frac{2π}{3}$=-1,
故答案为:-1
点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.
练习册系列答案
相关题目
20.f(cosx)=cos2x,那么f(sin150°)的值为 ( )
A. | -1 | B. | 1 | C. | $-\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
17.对于实数a,b,定义运算“*”:a*b=$\left\{\begin{array}{l}{-{a}^{2}+2ab-1.a<b}\\{{b}^{2}-ab,a>b}\end{array}\right.$,若f(x)=(2x-1)*(x-1),且函数y=f(x)-m有三个零点x1,x2,x3,则x1•x2•x3的取值范围是( )
A. | (-$\frac{1}{4}$,0) | B. | (-$\frac{1}{8}$,0) | C. | (-$\frac{1}{16}$,0) | D. | (-$\frac{1}{32}$,0) |
1.已知某次期中考试中,甲、乙两组学生的数学成绩如下:
甲:88 100 95 86 95 91 84 74 92 83
乙:93 89 81 77 96 78 77 85 89 86
则下列结论正确的是( )
甲:88 100 95 86 95 91 84 74 92 83
乙:93 89 81 77 96 78 77 85 89 86
则下列结论正确的是( )
A. | ${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,s甲>s乙 | B. | ${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,s甲<s乙 | ||
C. | ${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,s甲>s乙 | D. | ${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,s甲<s乙 |