题目内容

12.已知函数f(x)=$\left\{\begin{array}{l}2cos\frac{πx}{3}(x≤2012)\\{2^{x-2012}}(x>2012)\end{array}$,则f[f(2013)]=-1.

分析 根据已知中函数f(x)=$\left\{\begin{array}{l}2cos\frac{πx}{3}(x≤2012)\\{2^{x-2012}}(x>2012)\end{array}$,将x=2013代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}2cos\frac{πx}{3}(x≤2012)\\{2^{x-2012}}(x>2012)\end{array}$,
∴f[f(2013)]=f(22013-2012)=f(2)=2$cos\frac{2π}{3}$=-1,
故答案为:-1

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网