题目内容
19.已知函数f(x)=3sin(2x-$\frac{π}{4}$)(x∈R).(1)求f(x)的最小正周期;
(2)求f(x)单调区间;
(3)求f(x)图象的对称轴,对称中心.
(4)求f(x)的最大值以及达到最大值时x的值的集合.
分析 由条件利用正弦函数的周期性、单调性以及它的图象的对称性、函数的最大值,得出结论.
解答 解:对于函数函数f(x)=3sin(2x-$\frac{π}{4}$),(1)它的周期为$\frac{2π}{2}$=π;
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,可得函数的增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$],k∈Z.
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{3π}{8}$≤x≤kπ+$\frac{7π}{8}$,可得函数的增区间为[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.
(3)令2x-$\frac{π}{4}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{3π}{8}$,可得函数的图象的对称轴方程为x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z.
令2x-$\frac{π}{4}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{8}$,可得函数的图象的对称中心为($\frac{kπ}{2}$+$\frac{3π}{8}$,0),k∈Z.
(4)令2x-$\frac{π}{4}$=2kπ+$\frac{π}{2}$,求得x=kπ+$\frac{3π}{8}$,k∈Z,可得函数的最大值为2,此时,x满足x∈{x|x=kπ+$\frac{3π}{8}$,k∈Z}.
点评 本题主要考查正弦函数的周期性、单调性以及它的图象的对称性、最大值,属于中档题.
A. | 1 | B. | 2 | C. | 3 | D. | 4 |