题目内容

在△ABC中,已知角A为锐角,且f(A)=
(cos2A+1)sinA
2(cos2
A
2
-sin2
A
2
)
+
cos2A+1
2

(1)将f(A)化简成f(A)=Msin(ωA+φ)+N的形式;
(2)若A+B=
12
,f(A)=1,BC=2
,求边AC的长.
分析:(1)通过二倍角公式化简分式的分子,分母然后利用两角和的正弦函数即可把函数化简成f(A)=Msin(ωA+φ)+N的形式;
(2)利用f(A)求出A的值,得到B,C的值,利用正弦定理求出AC的值即可.
解答:解:(1)f(A)=
2cos2AsinA
2cosA
+
cos2A+1
2
(2分)
=cosA•sinA+
cos2A+1
2
(1分)
=
1
2
(sin2A+cos2A+1)
(1分)
=
2
2
sin(2A+
π
4
)+
1
2
(2分)
(2)由f(A)=1得
2
2
sin(2A+
π
4
)+
1
2
=1
,∴sin(2A+
π
4
)=
2
2
.(2分)
2A+
π
4
=
4
,A=
π
4
.又∵A+B=
12
,∴B=
π
3
.∴C=
12
.(A,B,C各(1分)共3分)
在△ABC中,由正弦定理得:
BC
sinA
=
AC
sinB
.∴AC=
BCsinB
sinA
=
6
(2分)
点评:本题是基础题,考查三角函数的公式的应用,正弦定理的应用,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网