题目内容

【题目】椭圆C: =1(a>b>0)的中心在原点,焦点在x轴上,焦距为2,且与椭圆x2+ =1有相同离心率,直线l:y=kx+m与椭圆C交于不同的A,B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q,满足 ,(O为坐标原点),求实数λ取值范围.

【答案】解:( I)由已知可 解得 ,∴b=1.
所求椭圆C的方程
( II)由 得(1+2k2)x2+4kmx+2m2﹣2=0,
∴△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(1+2k2﹣m2).
由直线直线l与椭圆C交于不同的A,B两点,有△>0,∴1+2k2>m2
设点A(x1 , y1),B(x2 , y2),则
于是
当m=0时,易知点A,B关于原点对称,则λ=0;
当m≠0时,易知点A,B不关于原点对称,则λ≠0.
,得
∵Q点在椭圆上,∴
化简得4m2(1+2k2)=λ2(1+2k22
∵1+2k2≠0,∴4m22(1+2k2).
由①②两式可得λ2<4,∴﹣2<λ<2且λ≠0.
综上可得实数λ的取值范围是﹣2<λ<2
【解析】(Ⅰ)利用已知条件列出椭圆几何量的方程组,求解a,b,即可求椭圆C的方程;(Ⅱ)联立直线与椭圆方程,利用韦达定理,结合向量关系,推出结果即可.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网