题目内容

20.如图,甲船在A处,乙船在A处的南偏东45°方向,距A有4.5海里,并以10海里/小时的速度沿南偏西15°方向航行,若甲船以14海里/小时的速度航行,应沿什么方向,用多少小时能尽快追上乙船?

分析 先利用平面中的知识求出∠ABC=180°-45°-15°=120°.再利用余弦定理AC2=AB2+BC2-2AB•BCcosα,求出对应的时间,根据正弦定理,可得结论..

解答 解:设用t小时,甲船能追上乙船,且在C处相遇.
在△ABC中,AC=14t,BC=10t,AB=4.5,
设∠ABC=α,∠BAC=β,∴α=180°-45°-15°=120°                          (2分)
根据余弦定理AC2=AB2+BC2-2AB•BCcosα,
(14t)2=$\frac{81}{4}$+(10t)2-2×4.5×10t×(-$\frac{1}{2}$),(4分)
128t2-60t-27=0,(4t-3)(32t+9)=0,解得t=$\frac{3}{4}$,t=$-\frac{9}{32}$(舍)             (6分)
∴AC=14×$\frac{3}{4}$=$\frac{21}{2}$,BC=10×$\frac{3}{4}$=$\frac{15}{2}$,(8分)
根据正弦定理,得$sinβ=\frac{BCsinα}{AC}=\frac{{15×\frac{{\sqrt{3}}}{2}}}{21}=\frac{{5\sqrt{3}}}{14}$,(10分)
又∵α=120°,∴β为锐角,β=arcsin$\frac{{5\sqrt{3}}}{14}$,(11分)
又$\frac{{5\sqrt{3}}}{14}$<$\frac{{7\sqrt{2}}}{14}$<$\frac{{\sqrt{2}}}{2}$,∴arcsin$\frac{{5\sqrt{3}}}{14}$<$\frac{π}{4}$,
甲船沿南偏东$\frac{π}{4}$-arcsin$\frac{{5\sqrt{3}}}{14}$的方向,用$\frac{3}{4}$小时可以追上乙船.                  (13分)

点评 本题主要考查解三角形的实际应用.解决这一类型题目的关键是把文字语言转化为数学符号,用数学公式,定理,公理等知识来解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网