题目内容
【题目】已知点,,在圆E上,过点的直线l与圆E相切.
Ⅰ求圆E的方程;
Ⅱ求直线l的方程.
【答案】(Ⅰ);(Ⅱ)直线l的方程为或.
【解析】
Ⅰ根据题意,设圆E的圆心为,半径为r;将A、B、C三点的坐标代入圆E的方程可得,即可得圆E的方程;Ⅱ根据题意,分2种情况讨论:,当直线l的斜率不存在时,直线l的方程为,验证可得此时符合题意,,当直线l的斜率存在时,设直线l的方程为,即,由直线与圆的位置关系计算可得k的值,可得此时直线的方程,综合即可得答案.
Ⅰ根据题意,设圆E的圆心为,半径为r;
则圆E的方程为,
又由点,,在圆E上,
则有,解可得,
即圆E的方程为;
Ⅱ根据题意,分2种情况讨论:
,当直线l的斜率不存在时,直线l的方程为,与圆M相切,符合题意;
,当直线l的斜率存在时,设直线l的方程为,即,
圆心E到直线l的距离,解可得,
则直线l的方程为,即,
综合可得:直线l的方程为或.
练习册系列答案
相关题目