题目内容
(2012•广州二模)已知函数f(x)=ex-e-x+1(e是自然对数的底数),若f(a)=2,则f(-a)的值为( )
分析:由f(x)=ex-e-x+1,f(a)=2,知ea-e-a=1,由此能求出f(-a)的值.
解答:解:∵f(x)=ex-e-x+1,
f(a)=2,
∴ea-e-a+1=2,
∴ea-e-a=1,
∴f(-a)=e-a-ea+1=-(ea-e-a)+1=-1+1=0.
故选D.
f(a)=2,
∴ea-e-a+1=2,
∴ea-e-a=1,
∴f(-a)=e-a-ea+1=-(ea-e-a)+1=-1+1=0.
故选D.
点评:本题考查有理数指数幂的化简求值,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目